Normal view MARC view ISBD view

LIposomal drug delivery for solubility and bioavailability enhancement of efavirenz

By: Rao, Monica R. P.
Contributor(s): Babrekar, Laxmi S.
Publisher: Mumbai Indian Journal of Pharmaceutical Science 2018Edition: Vol. 80(6), November-December.Description: 1115-1124.Subject(s): PHARMACEUTICSOnline resources: Click here In: Indian journal of pharmaceutical sciencesSummary: To overcome the limited solubility and low bioavailability of efavirenz a liposomal drug delivery system was formulated using thin film hydration technique. Optimal ratios of total lipid blend:drug, soya lecithin:cholesterol and polyethylene glycol 400 concentration were determined using Box Behnken design with vesicle size and entrapment efficiency as responses. The optimized liposomal dispersions were characterized by vesicle size, entrapment efficiency, transmission electron microscopy, in vitro drug release and in vivo pharmacokinetics. The vesicle size was found to be in range of 694.5-1200.0 nm and entrapment efficiency was above 80 %. Statistical studies revealed that vesicle size and entrapment efficiency increased with increase in total lipid blend:drug and polyethylene glycol 400 concentration. Transmission electron microscopy showed that unilamellar and multi-lamellar vesicles were formed. Optimized liposomal dispersion was solidified using nanosponges. Solid liposomes were characterized by micromeritics, differential scanning calorimetry, Fourier-transform infrared spectroscopy and bioavailability. As compared to plain drug a 10-fold increase in percent release was observed in 6 h in liposomal preparation. In vivo pharmacokinetic studies revealed that bioavailability increases 2 folds as compared to plain drug. Lipid-based drug delivery like liposomes are taken up through lymphatic pathway. Since the human immunodeficiency virus settles in lymphoid organs, lymphatic drug delivery can be advantageous in the treatment of acquired immune deficiency syndrome. Thus, the pharmacokinetic studies demonstrated that efavirenz-loaded liposomes could significantly upgrade the solubility and oral bioavailability of efavirenz and improve the therapeutic efficacy.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Pharmacy
Archieval Section
Not for loan 2018451
Total holds: 0

To overcome the limited solubility and low bioavailability of efavirenz a liposomal drug delivery system was formulated using thin film hydration technique. Optimal ratios of total lipid blend:drug, soya lecithin:cholesterol and polyethylene glycol 400 concentration were determined using Box Behnken design with vesicle size and entrapment efficiency as responses. The optimized liposomal dispersions were characterized by vesicle size, entrapment efficiency, transmission electron microscopy, in vitro drug release and in vivo pharmacokinetics. The vesicle size was found to be in range of 694.5-1200.0 nm and entrapment efficiency was above 80 %. Statistical studies revealed that vesicle size and entrapment efficiency increased with increase in total lipid blend:drug and polyethylene glycol 400 concentration. Transmission electron microscopy showed that unilamellar and multi-lamellar vesicles were formed. Optimized liposomal dispersion was solidified using nanosponges. Solid liposomes were characterized by micromeritics, differential scanning calorimetry, Fourier-transform infrared spectroscopy and bioavailability. As compared to plain drug a 10-fold increase in percent release was observed in 6 h in liposomal preparation. In vivo pharmacokinetic studies revealed that bioavailability increases 2 folds as compared to plain drug. Lipid-based drug delivery like liposomes are taken up through lymphatic pathway. Since the human immunodeficiency virus settles in lymphoid organs, lymphatic drug delivery can be advantageous in the treatment of acquired immune deficiency syndrome. Thus, the pharmacokinetic studies demonstrated that efavirenz-loaded liposomes could significantly upgrade the solubility and oral bioavailability of efavirenz and improve the therapeutic efficacy.

There are no comments for this item.

Log in to your account to post a comment.
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha